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For the analysis of decdy—scheme data, it is desirable to utilize all available o-particle, B-particle, and y-
ray data when determining emission probabilities. Additional constraints from the decay scheme should
also be considered. In this paper, the inclusion of all data in a fully constrained, covariance analysis to
obtain a self-consistent set of emission probabilities will be demo‘nstrated. The analysis of data where the

covariance error matrix is unknown will be discussed.

1. Perspective -

A common problem with the normalization of decay scheme intensities is obtaining a self-consistent

set of o-, B-, and y-ray branchings. For example, normalizing y-ray intensities to the total ground-state

feeding does not, in general, correctly normalize the f or o intensities. Because of statistical fluctuations,
decay branchings through levels may be negative (non-physical) or have positive values that are incon-
sistent with logft systematics. In some c;cxses, the level scheme is incomplete so statistical analysis is
impractical. Browne has demonstrated covariant analysis techniques for normalizing y-ray intensities [1]
and beta feedings [2]. These methods do not take into account non-physical decay branchings resulting
from statistical fluctuations. This paper discusses a self-consistent method for ponstraining the a-, B-, and
y-ray feedings so that all of the normalizations coincide. A re-analysis of the data for 3*Ba is presented as

an example.



2. Method of calculation

For levels with known a- or 8- feedings, the intensity balance can be constrained to zero. The equa-
tion describing the intensity balance through the ith level can be written as

i-1, n-1
Y 1(yce)= 3 I (yrce )+, (o) §))
j=1

k=i+1

where ijk are level sequence numbers numbering from 1 for the ground-state to n for the highest level

(isomer, o or B parent) considered in the analysis. I;;(y+e) are the electromagnetic transition intensities

and I,; (o.,B) are the o- or B- intensities feeding the levels. A consequence of the constraint of eq. (1) is that
the intensities feeding and deexciting the level are over-specified. To illustrate this, consider the decay

scheme for *Ba [3] shown in fig. 1. The ground state and first two excited states (levels 1-3) receive no
B-feeding because of the highly forbidden nature of those decays. For the 160.6-keV level (level 3), the

constraint ~

I3,(vre )=l i3(tre 4 s3(ve )1 n(y+e) ¥))
can be applied. A similar constraint can be applied to the 81.0-keV level (level 2). The transition intensity

parameters [; are linearly related to the experimental values f, by a set of equations which can be written in
matrix notation as

N
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. 4 .

Here, the 81.0- and 160.6-keV levels are constrained to zero net feeding so that seven parameters (y-ray

intensities) are sufficient to describe the nine transitions. The constraints are analogous to those imposed
when Y-ray energies are fit to a level scheme [4]. If the a- or B- intensities are known on the same relative
intensity scale as the electromagnetic transitions, the constraint can be applied to all levels. The choice of
which transitions are parameters is arbitrary, depending on how we solve the linear equations. In eq. (3),

the seven parameters correspond to the intensities of the second and fourth through ninth transitions. The
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Fig. 1. Decay scheme for 133Ba from Nucl. Data Sheets 49, (1986) 639.
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matrix element };; is +1 for parameters which feed the jth level, -1 for parameters deexciting the ith level,
and O if the parameter does not involve the level. If we solve the linear relations in eq. (3) to obtain the

parameters, a new set of fitted y-ray intensities /; can be determined from the equation

L=3 Nl @)
j=1
where m is the number of intensity parameters defined.

For a general decay scheme, additional constraints and subsequently fewer parameters /; may arise.

Eq. (4) can be written in matrix notation as

, =N ©®

The solution to eq. (5) is a well known linéar regression problem where
I=(Ty T | ©6)
Eq. (6) can be weighted by substituting ATW for AT where W is the weighting matrix which will be dis-

cussed in- greater detail below.

The above solution determines the parameters /; which correspond to some of the intensities. These -

parameters are analogous to the level energies that are determined by fitting the y-ray energies to the level
scheme. To determine all of the intensities, the calculated parameters should be substituted into eq. (4) and
new I; values calculated. If a weighted analysis is performed, the covariant error matrix V=(A" WA)™! con-
-tains the covariance relationships necessary to calculate the uncertainties in the fitted intensities. These

uncertainties are

- n 2 nn
A=Y AV + 2 Y Mgk Vi @)
k k 1=k

where the first term to the right of eq. (7) contains the variances of the parameters that define the transition

intensity, and the second term contains the covariance between those parameters.

Additional a- or B-branchings, not entered explicitly in the above analysis, can be calculated from
the intensity parameters and the covariant error matrix. The relative branching intensity to any level is sim-
ply the sum of transition intensities deexciting the level minus the sum of intensities feeding that level.

Summing over the intensities defined by eq. (4), we obtain
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where the summatidn is over all Y rays bopuiating (x;=1) or deexciting (x;=-1) each level. The vector B
defining the a- or B-transition intensity is analogous to the A vectors that form the rows in thé A matrix and
define the transition intensities. The elements of B;; are simply the sum of the corresponding A;;’s associ-
ated with the level. The uncertainty in_' the; branchings is determined from the covariant error matrix, in
analogy with eq. (7), and is given by

A]?(G,BFiBiiVu’“i i Bi Bt Vi )
3

k1l#k

The statistical ana_lysis discussed above provides a self-consistent set of relative intensities on an arbitrary
scale. In order to determine the absplute branching intensities per decay, it is necessary to renormalize
them. This normalization is an additional constraint and the normalization constant N can be determined
from a sum of transition intensities known to carry 100% of the decay intensity. Commonly, this is satis-

fied by transitions feeding the ground-state(s) (plus sometimes long-lived isomeric states) of the

daughter(s). We define the normalization constant N as

1
)Emkij’j _ (10)
P

where the initial summation is over all transitions contributing to the normalization. If the normalization

includes only ground-state transitions, eq. (10) becomes

-1.
fl (G,B (1 1)

The negative sign arises because the apparent B or o feeding to the ground state is negative as defined in

“eq. (8). The uncertainty AN in the normalization is determined by eq. (9), and absolute transition intensi-

ties are given by

w

I;=NI; | L 12)

The uncertainty in the absolute transition intensities /; are defined as

.Af2=1_.2 ( Efo_v_(]il_‘)
: ) N]i

AN ., i;z .
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where the covariant terms in eq. (13) are
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Similarly, the absolute photon branching intensities are determined from the absolute intensities and the

experimental conversion coefficients by

- I;
L= o as)

The uncertainty in the photon branching intensity can be determined in analogy with eq. (13) as

ALQ) , 20ov(NT; ALK ,
.ty NI) AT

AT (P (16)

. where we have assumed that the experimental uncertainties for the y rays and conversion coefficients are

independent and were added in quadrature to determine the weighting matrix. The absolute transition pro-

babilities described above yield identical results to those described by Browne [1,2] when no constraints

are applied to the level scheme.

3. Calculation considerations

Although the mathematical considerations discussed in sec. 2 are generally valid, the application of

these methods to real data requires additional considerations which are outlined below.
(1) Completeness of decay schemes

The calculations described here presume that the variations in the branching intensities are statistical. If
unobserved transitions populate the constrained levels, the intensity adjustments will be invalid. This prob-
lem will often occur in decays of nuclei far from stability where Q-values are large and, as a result,
numerous, weak transitions may have a large cumulative effect. Even near stability, if the level density in
the daughter is high or the transition energies oécur where the intensity is difficult to measure, potential pit-
falls exist. In addition, an accurate knowledge of conversion coefficients and the existence of EQ transi-

tions is required to correctly fit the data.
(2) The weighting matrix

The calculations described here presume that the full weighting matrix relating the input data is known. If
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the transition intensities were uncorrelated, a diagonal weighting matrix, containing the weights for each
input intensity, would be sufficient. In generél, the measured intensities should be correlated, first to the
experimental efficiency calibrations, and ultimately to the standard source calibrations. If we know these
relationships, the off-diagonal weighting matrix elements can be calculated and included in the analysis.
Unfortunately, this is only possible when the appropriate information is gathered by the experimenter.
Analysis of published data cannot, generally, include a sophisticated analysis of these correlations. For the
exz;mplé I;rcsented in thié pépcr, wé have assumed ::1 diagonal weighting matrix where the experimental
valués are weighed by their uncertainties. This choice of weighting may not always lead to valid results.
For weak transitions, the assumption of a gaussian probability distribution allows the solution to yield non-

physical, negative intensities.
(3) Model testing

In light of the cavéais expressed above, it is .useful to test the data for the quality of the fit. Many methods

of testing statistical data have been developed. One method, which was used for the Table of Radioactive

Isotopes [5], is a simple chi-square analysis. In this analysis we calculate the quantity x%f where

2 1 2 @1y
f m3 N:

and I, Al are the experimental intensity and its uncertainty, I is the fitted intensity, n is the number if transi-

an

tions, and m is the number of fitted parameters. This test can indicate whether the fitting assumptions
agree with the data wuhm experimental accuracy. Typically, for x2/f <1, a >95% confidence limit can be
assumed for the result Additional tests for correlations in the data can be performed when sufficient data

exist.
(4) Measurements on differing scales

We alluded in sec. 2 to the possibililty of 'constraining Athe level branchings to the measured a- or B-feeding
intensities. If those measurements are on the same reiative intensity scale as the electromagnetic transi-
tions, the discussion in sec. 2 is adequafe. Otherwise, the intensities must be placed on a common scale. A
procedure for doing this has been outlined by Tepel [6]. The goal ‘is to renormalize the data such that the

normalization minimizes % . This is a non-linear process where an approximate normalization constant
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is chosen, ¥%f is calculated, and the constant is then iterated until a minimum value of X%f is found.
Work is currently in progress to implement this capability into GAMBET (7], the computer code written

for these calculations, and will be reported at a later date.

4. 33Ba Example

The experimental data from ref. [8] is summarized in table 1. The computer code GAMBET [7] has been

used to perform the analysis described above for **Ba decay. The resulting y-ray intensities from an

unconstrained analysis are given col. 4 of table 1. These values are identical to those calculated by the

method of ref. [1], but they have much larger uncertainties than in ref. 8. The larger, unconstrained uncer- .

tainties result mainly from the conversion coefficient uncertainties. It should be noted that the uncertainties
in ref. [8] were obtained by averaging many values with >2% individual uncertainties. If significant corre-
lations exist between the measurements, e.g. due to common calibration standards, simple averaging of the

values will artificially remove the covariant errors.

The last column in table_l contains the absolute y-ray branching intensities, constraining the -
feeding to the 81.0- and 160.6-keV levels to zero, and normalizing to the ground-state transition intensity to

100.0%.

Table 1. Comparison of '**Ba y-ray emission probabilities.

: Photon Branching Intensity
E(level) EY o(tot) Ref. [8] Unconstrained  Constrained
810 81.0 1.63(6) 34.06(27) 34.22(91) 34.23(28)

160.6 796 1.70(6). 2.62(6) 2.63(9) 2.68(6)
S 160.6  0.296(3) 0.645(8) 0.648(20) 0.646(8)
‘ 2232 0.0984(1) 0.450(4) 0.452(13) 0.450(4)
3839 3029 0.0438 18.33(6) 18.42(51) 18.34(7)
3839 0.0203 8.94(3) 8.98(25) 8.94(3)
532  6.003) 2.179(22) 2.189(64) 2.180(22)
437.0 2764  0.0569 7.164(22) 7.20020) 7.166(27)
356.0 0.0255 62.05(19) 62.3(17) 62.08(23)

The statistical uncertainties of the constrained values are reduced to nearly the magnitude of the values in

ref. 8. These uncertainties may contain systematic uncertainties from sources such as detector calibrations
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and summing. For the constrained analysis, x?/f =0.23 which yields a 98% confidence limit justifying the

analysis in this case.

In table 2, the B-branchings for 133Ba decay are presented. ‘The first column indicates the evaluated
B-feedings from Nuclear Data Sheets [3]. The source of the uncertainties. was not indicated in ref. 3, how-
ever it is apparent that the limits on feedings to the 81.0- and '160.6-keV levels are experimental. Logft
selection rules [9] suggest that a logfr>12.8 is expected, limiting these feedings to less than 0.003%. The
second column indicates the B-feeding derived assuming an unconstrained fit. Here, non-physical negative
feeding is derived to the 81.0- ana 160.6-keV levels and the total $-feeding to the other levels is 100.4%.
The last column indicates the constrained B-feedings. The ground state and first two excited states receive
no feeding and the P-feedings to the higher states sum exactly to 100.0%. The result of the constrained

analysis agrees closely with that of ref. [2] where a partial constraint was applied.

Table 2. Comparison of '33Ba B-emission probabilities

B-feeding
E(evel) Ref.3 Unconstrained Constrained
0.0 0 0 0
81.0 <0.3 -0.26(20) 0
160.6 <3 -0.1567(44) 0
3839 . 14Q1) 13.55(87) 13.50(78)
4370 86(1) 86.9(25) 86.50(78)
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